G++
無法使用 CUDNN 支持建構暗網
我正在嘗試使用 manjaro linux編譯來自https://github.com/pjreddie/darknet的原始碼。但是當我嘗試使用 CUDNN 開關時,建構出現問題。
g++ -DOPENCV -I/usr/include/opencv4/opencv2/ `pkg-config --cflags opencv` -DGPU -I/usr/local/cuda/include/ -DCUDNN -Wall -Wfatal-errors -Wno-unused-result -Wno-unknown-pragmas -Ofast -DOPENCV -DGPU -DCUDNN -I/usr/local/cudnn/include -c ./src/http_stream.cpp -o obj/http_stream.o Package opencv was not found in the pkg-config search path. Perhaps you should add the directory containing `opencv.pc' to the PKG_CONFIG_PATH environment variable Package 'opencv', required by 'virtual:world', not found ./src/http_stream.cpp:46:10: fatal error: opencv2/opencv.hpp: Arquivo ou diretório inexistente #include "opencv2/opencv.hpp" ^~~~~~~~~~~~~~~~~~~~
這是我的製作文件。
GPU=1 CUDNN=1 CUDNN_HALF=0 OPENCV=1 AVX=0 OPENMP=0 LIBSO=0 # set GPU=1 and CUDNN=1 to speedup on GPU # set CUDNN_HALF=1 to further speedup 3 x times (Mixed-precision using Tensor Cores) on GPU Tesla V100, Titan V, DGX-2 # set AVX=1 and OPENMP=1 to speedup on CPU (if error occurs then set AVX=0) DEBUG=0 ARCH= -gencode arch=compute_30,code=sm_30 \ -gencode arch=compute_35,code=sm_35 \ -gencode arch=compute_50,code=[sm_50,compute_50] \ -gencode arch=compute_52,code=[sm_52,compute_52] \ -gencode arch=compute_61,code=[sm_61,compute_61] OS := $(shell uname) # Tesla V100 # ARCH= -gencode arch=compute_70,code=[sm_70,compute_70] # GTX 1080, GTX 1070, GTX 1060, GTX 1050, GTX 1030, Titan Xp, Tesla P40, Tesla P4 ARCH= -gencode arch=compute_61,code=sm_61 -gencode arch=compute_61,code=compute_61 # GP100/Tesla P100 � DGX-1 # ARCH= -gencode arch=compute_60,code=sm_60 # For Jetson TX1, Tegra X1, DRIVE CX, DRIVE PX - uncomment: # ARCH= -gencode arch=compute_53,code=[sm_53,compute_53] # For Jetson Tx2 or Drive-PX2 uncomment: # ARCH= -gencode arch=compute_62,code=[sm_62,compute_62] VPATH=./src/ EXEC=darknet OBJDIR=./obj/ ifeq ($(LIBSO), 1) LIBNAMESO=darknet.so APPNAMESO=uselib endif CC=gcc CPP=g++ NVCC=nvcc OPTS=-Ofast LDFLAGS= -lm -pthread COMMON= CFLAGS=-Wall -Wfatal-errors -Wno-unused-result -Wno-unknown-pragmas ifeq ($(DEBUG), 1) OPTS= -O0 -g else ifeq ($(AVX), 1) CFLAGS+= -ffp-contract=fast -mavx -msse4.1 -msse4a endif endif CFLAGS+=$(OPTS) ifeq ($(OPENCV), 1) COMMON+= -DOPENCV -I/usr/include/opencv4/opencv2/ CFLAGS+= -DOPENCV LDFLAGS+= `pkg-config --libs opencv` COMMON+= `pkg-config --cflags opencv` endif ifeq ($(OPENMP), 1) CFLAGS+= -fopenmp LDFLAGS+= -lgomp endif ifeq ($(GPU), 1) COMMON+= -DGPU -I/usr/local/cuda/include/ CFLAGS+= -DGPU ifeq ($(OS),Darwin) #MAC LDFLAGS+= -L/usr/local/cuda/lib -lcuda -lcudart -lcublas -lcurand else LDFLAGS+= -L/usr/local/cuda/lib64 -lcuda -lcudart -lcublas -lcurand endif endif ifeq ($(CUDNN), 1) COMMON+= -DCUDNN ifeq ($(OS),Darwin) #MAC CFLAGS+= -DCUDNN -I/usr/local/cuda/include LDFLAGS+= -L/usr/local/cuda/lib -lcudnn else CFLAGS+= -DCUDNN -I/usr/local/cudnn/include LDFLAGS+= -L/usr/local/cudnn/lib64 -lcudnn endif endif ifeq ($(CUDNN_HALF), 1) COMMON+= -DCUDNN_HALF CFLAGS+= -DCUDNN_HALF ARCH+= -gencode arch=compute_70,code=[sm_70,compute_70] endif OBJ=http_stream.o gemm.o utils.o cuda.o convolutional_layer.o list.o image.o activations.o im2col.o col2im.o blas.o crop_layer.o dropout_layer.o maxpool_layer.o softmax_layer.o data.o matrix.o network.o connected_layer.o cost_layer.o parser.o option_list.o darknet.o detection_layer.o captcha.o route_layer.o writing.o box.o nightmare.o normalization_layer.o avgpool_layer.o coco.o dice.o yolo.o detector.o layer.o compare.o classifier.o local_layer.o swag.o shortcut_layer.o activation_layer.o rnn_layer.o gru_layer.o rnn.o rnn_vid.o crnn_layer.o demo.o tag.o cifar.o go.o batchnorm_layer.o art.o region_layer.o reorg_layer.o reorg_old_layer.o super.o voxel.o tree.o yolo_layer.o upsample_layer.o ifeq ($(GPU), 1) LDFLAGS+= -lstdc++ OBJ+=convolutional_kernels.o activation_kernels.o im2col_kernels.o col2im_kernels.o blas_kernels.o crop_layer_kernels.o dropout_layer_kernels.o maxpool_layer_kernels.o network_kernels.o avgpool_layer_kernels.o endif OBJS = $(addprefix $(OBJDIR), $(OBJ)) DEPS = $(wildcard src/*.h) Makefile all: obj backup results $(EXEC) $(LIBNAMESO) $(APPNAMESO) ifeq ($(LIBSO), 1) CFLAGS+= -fPIC $(LIBNAMESO): $(OBJS) src/yolo_v2_class.hpp src/yolo_v2_class.cpp $(CPP) -shared -std=c++11 -fvisibility=hidden -DYOLODLL_EXPORTS $(COMMON) $(CFLAGS) $(OBJS) src/yolo_v2_class.cpp -o $@ $(LDFLAGS) $(APPNAMESO): $(LIBNAMESO) src/yolo_v2_class.hpp src/yolo_console_dll.cpp $(CPP) -std=c++11 $(COMMON) $(CFLAGS) -o $@ src/yolo_console_dll.cpp $(LDFLAGS) -L ./ -l:$(LIBNAMESO) endif $(EXEC): $(OBJS) $(CPP) $(COMMON) $(CFLAGS) $^ -o $@ $(LDFLAGS) $(OBJDIR)%.o: %.c $(DEPS) $(CC) $(COMMON) $(CFLAGS) -c $< -o $@ $(OBJDIR)%.o: %.cpp $(DEPS) $(CPP) $(COMMON) $(CFLAGS) -c $< -o $@ $(OBJDIR)%.o: %.cu $(DEPS) $(NVCC) $(ARCH) $(COMMON) --compiler-options "$(CFLAGS)" -c $< -o $@ obj: mkdir -p obj backup: mkdir -p backup results: mkdir -p results .PHONY: clean clean: rm -rf $(OBJS) $(EXEC) $(LIBNAMESO) $(APPNAMESO)
似乎與新的 gcc 或 opencv 版本有關,但我不對。
好的,它已解決,我會報告以防其他人偶然發現它。整個混亂是由於以下部分:
LDFLAGS+= pkg-config --libs opencv -lstdc++
pkg-config 無法弄清楚,所以我不得不手動導出它:
export PKG_CONFIG_PATH=/opt/opencv3/lib/pkgconfig/
然後它與這個make文件一起工作:
GPU=1 CUDNN=1 OPENCV=1 OPENMP=1 DEBUG=0 ARCH= -gencode arch=compute_61,code=[sm_61,sm_61] #\ This one is deprecated? # -gencode arch=compute_30,code=sm_30 \ # -gencode arch=compute_35,code=sm_35 \ # -gencode arch=compute_50,code=[sm_50,compute_50] \ # -gencode arch=compute_52,code=[sm_52,compute_52] # This is what I use, uncomment if you know your arch and want to specify # ARCH= -gencode arch=compute_52,code=compute_52 VPATH=./src/:./examples SLIB=libdarknet.so ALIB=libdarknet.a EXEC=darknet OBJDIR=./obj/ CC=gcc CPP=g++ NVCC=nvcc AR=ar ARFLAGS=rcs OPTS=-Ofast LDFLAGS= -lm -pthread COMMON= -Iinclude/ -Isrc/ CFLAGS=-Wall -Wno-unused-result -Wno-unknown-pragmas -Wfatal-errors -fPIC ifeq ($(OPENMP), 1) CFLAGS+= -fopenmp endif ifeq ($(DEBUG), 1) OPTS=-O0 -g endif CFLAGS+=$(OPTS) ifeq ($(OPENCV), 1) COMMON+= -DOPENCV -I/opt/opencv3/include/opencv2 CFLAGS+= -DOPENCV LDFLAGS+= `pkg-config --libs opencv` -lstdc++ COMMON+= `pkg-config --cflags opencv` endif ifeq ($(GPU), 1) COMMON+= -DGPU -I/usr/local/cuda/include/ CFLAGS+= -DGPU LDFLAGS+= -L/usr/local/cuda/lib64 -lcudart -lcublas -lcurand endif ifeq ($(CUDNN), 1) COMMON+= -DCUDNN CFLAGS+= -DCUDNN LDFLAGS+= -lcudnn endif OBJ=gemm.o utils.o cuda.o deconvolutional_layer.o convolutional_layer.o list.o image.o activations.o im2col.o col2im.o blas.o crop_layer.o dropout_layer.o maxpool_layer.o softmax_layer.o data.o matrix.o network.o connected_layer.o cost_layer.o parser.o option_list.o detection_layer.o route_layer.o upsample_layer.o box.o normalization_layer.o avgpool_layer.o layer.o local_layer.o shortcut_layer.o logistic_layer.o activation_layer.o rnn_layer.o gru_layer.o crnn_layer.o demo.o batchnorm_layer.o region_layer.o reorg_layer.o tree.o lstm_layer.o l2norm_layer.o yolo_layer.o iseg_layer.o image_opencv.o EXECOBJA=captcha.o lsd.o super.o art.o tag.o cifar.o go.o rnn.o segmenter.o regressor.o classifier.o coco.o yolo.o detector.o nightmare.o instance-segmenter.o darknet.o ifeq ($(GPU), 1) LDFLAGS+= -lstdc++ OBJ+=convolutional_kernels.o deconvolutional_kernels.o activation_kernels.o im2col_kernels.o col2im_kernels.o blas_kernels.o crop_layer_kernels.o dropout_layer_kernels.o maxpool_layer_kernels.o avgpool_layer_kernels.o endif EXECOBJ = $(addprefix $(OBJDIR), $(EXECOBJA)) OBJS = $(addprefix $(OBJDIR), $(OBJ)) DEPS = $(wildcard src/*.h) Makefile include/darknet.h all: obj backup results $(SLIB) $(ALIB) $(EXEC) #all: obj results $(SLIB) $(ALIB) $(EXEC) $(EXEC): $(EXECOBJ) $(ALIB) $(CC) $(COMMON) $(CFLAGS) $^ -o $@ $(LDFLAGS) $(ALIB) $(ALIB): $(OBJS) $(AR) $(ARFLAGS) $@ $^ $(SLIB): $(OBJS) $(CC) $(CFLAGS) -shared $^ -o $@ $(LDFLAGS) $(OBJDIR)%.o: %.cpp $(DEPS) $(CPP) $(COMMON) $(CFLAGS) -c $< -o $@ $(OBJDIR)%.o: %.c $(DEPS) $(CC) $(COMMON) $(CFLAGS) -c $< -o $@ $(OBJDIR)%.o: %.cu $(DEPS) $(NVCC) $(ARCH) $(COMMON) --compiler-options "$(CFLAGS)" -c $< -o $@ obj: mkdir -p obj backup: mkdir -p backup results: mkdir -p results .PHONY: clean clean: rm -rf $(OBJS) $(SLIB) $(ALIB) $(EXEC) $(EXECOBJ) $(OBJDIR)/*
還與查看哪個版本的 cudnn 必須與每個版本的 cuda 一起使用相關:https ://developer.nvidia.com/rdp/cudnn-archive