Nvidia

Debian 9 上的 CUDA - 工具包在哪裡?

  • June 13, 2018

我已經遵循了一些關於如何在 Debian 9 中安裝 CUDA 的教程。

到目前為止,讓我使用的最好nvcc的一個是您可以在此連結中找到的那個。

現在的問題是,我找不到工具包。我已經嘗試使用find命令等,但沒有。有人知道工具包在哪裡嗎?

因為,每當我執行nvcc使用 CUDA 編譯一個簡單的“Hello World”程序時,它都會出錯,因為它找不到庫。當我嘗試安裝範例時,它會詢問工具包路徑,但我找不到它。

添加:

我使用以下方法安裝了所有東西:

apt-get install nvidia-cuda-dev nvidia-cuda-toolkit  nvidia-driver 

在此之後,我跑了:

nvcc -V

要檢查是否安裝了 nvcc,輸出如下:

nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c) 2005-2016 NVIDIA Corporation
Built on Sun_Sep__4_22:14:01_CDT_2016

我下載了 ubuntu 16.04 和 CUDA 8.0 的 .run 文件:

cuda_8.0.61_375.26_linux-執行

我跳過了驅動程序的安裝和工具包的安裝,直接跳轉到範例安裝

Do you accept the previously read EULA?
accept/decline/quit: accept

You are attempting to install on an unsupported configuration. Do you wish to continue?
(y)es/(n)o [ default is no ]: y

Install NVIDIA Accelerated Graphics Driver for Linux-x86_64 375.26?
(y)es/(n)o/(q)uit: n

Install the CUDA 8.0 Toolkit?
(y)es/(n)o/(q)uit: n

Install the CUDA 8.0 Samples?
(y)es/(n)o/(q)uit: y

Enter CUDA Samples Location
[ default is /root ]: /home/sergiobranco/cuda_samples

Enter Toolkit Location
[ default is /usr/local/cuda-8.0 ]: 

Error: cannot find Toolkit in /usr/local/cuda-8.0
Enter Toolkit Location
[ default is /usr/local/cuda-8.0 ]: ??????????

問題是它要求工具包的位置,而我不知道。我按輸入鍵,然後嘗試安裝範例,但這是錯誤:

Error: unsupported compiler: 6.3.0. Use --override to override this check.
Missing recommended library: libXmu.so

Error: cannot find Toolkit in /usr/local/cuda-8.0

===========
= Summary =
===========

Driver:   Not Selected
Toolkit:  Installation Failed. Using unsupported Compiler.
Samples:  Cannot find Toolkit in /usr/local/cuda-8.0


Logfile is /tmp/cuda_install_3212.log

我已經使用了 –override 參數,但它失敗了。

在此之後,我嘗試至少編譯 cuda 給出的“第一個程序”之一:

#include <stdio.h>

__global__
void saxpy(int n, float a, float *x, float *y)
{
 int i = blockIdx.x*blockDim.x + threadIdx.x;
 if (i < n) y[i] = a*x[i] + y[i];
}

int main(void)
{
 int N = 1<<20;
 float *x, *y, *d_x, *d_y;
 x = (float*)malloc(N*sizeof(float));
 y = (float*)malloc(N*sizeof(float));

 cudaMalloc(&d_x, N*sizeof(float)); 
 cudaMalloc(&d_y, N*sizeof(float));

 for (int i = 0; i < N; i++) {
   x[i] = 1.0f;
   y[i] = 2.0f;
 }

 cudaMemcpy(d_x, x, N*sizeof(float), cudaMemcpyHostToDevice);
 cudaMemcpy(d_y, y, N*sizeof(float), cudaMemcpyHostToDevice);

 // Perform SAXPY on 1M elements
 saxpy<<<(N+255)/256, 256>>>(N, 2.0f, d_x, d_y);

 cudaMemcpy(y, d_y, N*sizeof(float), cudaMemcpyDeviceToHost);

 float maxError = 0.0f;
 for (int i = 0; i < N; i++)
   maxError = max(maxError, abs(y[i]-4.0f));
 printf("Max error: %f\n", maxError);

 cudaFree(d_x);
 cudaFree(d_y);
 free(x);
 free(y);
}

但這是輸出:

nvcc -ccbin clang-3.8 hello.c 
nvcc warning : The 'compute_20', 'sm_20', and 'sm_21' architectures are deprecated, and may be removed in a future release (Use -Wno-deprecated-gpu-targets to suppress warning).
hello.c:3:1: error: unknown type name '__global__'
__global__
^
hello.c:4:1: error: expected identifier or '('
void saxpy(int n, float a, float *x, float *y)
^
hello.c:14:15: warning: implicitly declaring library function 'malloc' with type 'void *(unsigned long)' [-Wimplicit-function-declaration]
 x = (float*)malloc(N*sizeof(float));
             ^
hello.c:14:15: note: include the header <stdlib.h> or explicitly provide a declaration for 'malloc'
hello.c:17:3: warning: implicit declaration of function 'cudaMalloc' is invalid in C99 [-Wimplicit-function-declaration]
 cudaMalloc(&d_x, N*sizeof(float)); 
 ^
hello.c:25:3: warning: implicit declaration of function 'cudaMemcpy' is invalid in C99 [-Wimplicit-function-declaration]
 cudaMemcpy(d_x, x, N*sizeof(float), cudaMemcpyHostToDevice);
 ^
hello.c:25:39: error: use of undeclared identifier 'cudaMemcpyHostToDevice'
 cudaMemcpy(d_x, x, N*sizeof(float), cudaMemcpyHostToDevice);
                                     ^
hello.c:26:39: error: use of undeclared identifier 'cudaMemcpyHostToDevice'
 cudaMemcpy(d_y, y, N*sizeof(float), cudaMemcpyHostToDevice);
                                     ^
hello.c:29:3: error: use of undeclared identifier 'saxpy'
 saxpy<<<(N+255)/256, 256>>>(N, 2.0f, d_x, d_y);
 ^
hello.c:29:10: error: expected expression
 saxpy<<<(N+255)/256, 256>>>(N, 2.0f, d_x, d_y);
        ^
hello.c:29:29: error: expected expression
 saxpy<<<(N+255)/256, 256>>>(N, 2.0f, d_x, d_y);
                           ^
hello.c:29:31: warning: expression result unused [-Wunused-value]
 saxpy<<<(N+255)/256, 256>>>(N, 2.0f, d_x, d_y);
                             ^
hello.c:29:34: warning: expression result unused [-Wunused-value]
 saxpy<<<(N+255)/256, 256>>>(N, 2.0f, d_x, d_y);
                                ^~~~
hello.c:29:40: warning: expression result unused [-Wunused-value]
 saxpy<<<(N+255)/256, 256>>>(N, 2.0f, d_x, d_y);
                                      ^~~
hello.c:31:39: error: use of undeclared identifier 'cudaMemcpyDeviceToHost'
 cudaMemcpy(y, d_y, N*sizeof(float), cudaMemcpyDeviceToHost);
                                     ^
hello.c:35:16: warning: implicit declaration of function 'max' is invalid in C99 [-Wimplicit-function-declaration]
   maxError = max(maxError, abs(y[i]-4.0f));
              ^
hello.c:35:30: warning: implicitly declaring library function 'abs' with type 'int (int)' [-Wimplicit-function-declaration]
   maxError = max(maxError, abs(y[i]-4.0f));
                            ^
hello.c:35:30: note: include the header <stdlib.h> or explicitly provide a declaration for 'abs'
hello.c:35:30: warning: using integer absolute value function 'abs' when argument is of floating point type [-Wabsolute-value]
   maxError = max(maxError, abs(y[i]-4.0f));
                            ^
hello.c:35:30: note: use function 'fabsf' instead
   maxError = max(maxError, abs(y[i]-4.0f));
                            ^~~
                            fabsf
hello.c:35:30: note: include the header <math.h> or explicitly provide a declaration for 'fabsf'
hello.c:38:3: warning: implicit declaration of function 'cudaFree' is invalid in C99 [-Wimplicit-function-declaration]
 cudaFree(d_x);
 ^
hello.c:40:3: warning: implicit declaration of function 'free' is invalid in C99 [-Wimplicit-function-declaration]
 free(x);
 ^
11 warnings and 8 errors generated.

好吧,最後我能夠安裝所有東西並且工作正常。我將在此處發布有關我如何為 debian 9 執行此操作的完整教程:

第一步:

apt-get install nvidia-cuda-dev nvidia-cuda-toolkit  nvidia-driver 

要執行上面的命令,您應該檢查此連結,以便更好地了解如何為您的董事會正確執行此操作。

說了這麼多,那我下載下面的執行文件CUDA 8.0

我還必須安裝這些:

apt-get install libglu1-mesa libxi-dev libxmu-dev libglu1-mesa-dev

然後我必須將工具包包含到我的 $PATH 中才能使其工作:

export PATH=$PATH:/usr/lib/nvidia-cuda-toolkit

然後你必須這樣做:

sh /home/username/Downloads/cuda_8.0.61_375.26_linux.run --tar mxvf
cp InstallUtils.pm /usr/lib/x86_64-linux-gnu/perl-base/
export $PERL5LIB

現在您可以安裝範例:

sh /home/username/Downloads/cuda_8.0.61_375.26_linux.run

當它詢問工具包路徑時,您應該輸入:

/usr/lib/nvidia-cuda-toolkit

這是我的答案:

Do you accept the previously read EULA?
accept/decline/quit: accept

You are attempting to install on an unsupported configuration. Do you wish to continue?
(y)es/(n)o [ default is no ]: y

Install NVIDIA Accelerated Graphics Driver for Linux-x86_64 375.26?
(y)es/(n)o/(q)uit: n

Install the CUDA 8.0 Toolkit?
(y)es/(n)o/(q)uit: n

Install the CUDA 8.0 Samples?
(y)es/(n)o/(q)uit: y

Enter CUDA Samples Location
[ default is /root ]: /somewher

Enter Toolkit Location
[ default is /usr/local/cuda-8.0 ]: /usr/lib/nvidia-cuda-toolkit

它現在應該可以毫無問題地安裝範例。然後您可以轉到安裝它們的文件夾並執行:

nvcc -ccbin clang++-3.8 somefile.cu -o somename

你去吧。. .

如果你想安裝 pycuda,你只需要這樣做:

apt-get install build-essential python-dev python-setuptools libboost-python-dev libboost-thread-dev -y
apt-get install python-pycuda

引用自:https://unix.stackexchange.com/questions/429549